US0094006438B2

a2z United States Patent (10) Patent No.: US 9,400,648 B2
Saraf et al. (45) Date of Patent: *Jul. 26, 2016
(54) SOFTWARE UPGRADE ANALYSIS SYSTEM USPC oo 717/170, 101, 174

(71) Applicant: Accenture Global Services Limited,
Dublin (IE)

(72) Inventors: Sachin Saraf, Mumbai (IN); Vidyut
Dinkar Kichambare, Pune (IN)

(73) Assignee: Accenture Global Services Limited,
Dublin (IE)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 74 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/294,114

(22) Filed: Jun. 2,2014
(65) Prior Publication Data
US 2014/0282473 Al Sep. 18, 2014

Related U.S. Application Data

(63) Continuation of application No. 12/183,482, filed on
Jul. 31, 2008, now Pat. No. 8,745,611.

(30) Foreign Application Priority Data
Jun. 5,2008 (IN) .ccoevvenieenneee 1202/MUM/2008
(51) Imt.ClL
GO6F 9/44 (2006.01)
GOGF 9/445 (2006.01)
(52) US.CL

CPC .. GOG6F 8/71 (2013.01); GOGF 8/65 (2013.01);
GOGF 8/61 (2013.01); GO6F 8/68 (2013.01)

(58) Field of Classification Search
CPC ..o GOGF 8/65; GO6F 8/71; GOGF 8/61;
GOGF 8/68

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

5,588,143 A 12/1996 Stupek
5,850,554 A * 12/1998 Carver GO6F 8/71
717/62

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2005250892 A 9/2005
OTHER PUBLICATIONS

Canadian Examiner’s Report for Application No. 2,666,002 dated
Aug. 9, 2013 (4 pages).

(Continued)

Primary Examiner — Wei Zhen
Assistant Examiner — Mohammed Huda
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

A system may include computer code for analyzing an
upgrade from a first version to a second version of a software
program that has been customized without performing the
upgrade. The system may provide default state information of
default program objects. The default program objects would
be included in a default installation of the second version of
the software program. The computer code may retrieve cur-
rent state information of current program objects from an
application database. The software program that has been
customized may include the current program objects. The
system may generate upgrade information based on a com-
parison between the current state information and the default
state information. The upgrade information may identify a
subset of the current program objects that would be impacted
by the upgrade.

20 Claims, 4 Drawing Sheets

Upgrade Analysis Tool

4
Display 112 104
Processor 108

Software Program 102

Executable Code
122

11 120
Program Program
Object 1 Object N
| |
| |
i

Current State 128
Information
Default State 130
Information

Upgrade 132
Information

State 124 |State 126
Information 1 Information N
State Information 114

Application Database

116

106
Repository Database

\100

US 9,400,648 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,367,077 Bl 4/2002 Brodersen
6,385,770 Bl 5/2002 Sinander
6,825,941 Bl 11/2004 Nguyen
7,191,435 B2 3/2007 Lau
8,745,611 B2 6/2014 Saraf et al.

2003/0130985 Al
2003/0229890 Al

7/2003 Driesen
12/2003 Lau

2005/0060392 Al* 3/2005 Goring GOG6F 9/4443
709/220

2005/0193269 Al 9/2005 Haswell

2005/0257211 Al* 11/2005 Chatterjee GO6F 8/67
717/170

2006/0117310 Al 6/2006 Daniels

2006/0206866 Al* 9/2006 Eldrige GO5B 15/02
717/122

2007/0006217 Al* 1/2007 Tammana ... GO6F 8/61
717/174

2007/0220065 Al 9/2007 Coyle

2007/0294684 Al* 12/2007 Kumashiro GO6F 8/65
717/168

2009/0307650 Al 12/2009 Saraf et al.
OTHER PUBLICATIONS

Canadian Examiner’s Report for Application No. 2,666,002 dated
Jun. 10, 2011 (3 pages).

European Search Report and Written Opinion, dated Oct. 21, 2009,
pp. 1-7, European Patent Application No. 09251351.4-2211, Euro-
pean Patent Office, Germany.

Ishikawa, Japanese Office Action in corresponding Japanese Appli-
cation No. 2009-130798, Jan. 31, 2012, 6 pages.

Tsukada, Japanese Office Action in co-pending Japnese Application
Serial No. 2009-130798, mailed on Sep. 11, 2012 (6 pages).
Comparing Check Indicators/Field Values Afte Upgrade, http://help.
sap.com, downloaded Jul. 18, 2008.

Design and Implementation of Authorization Concepts for SAP R/3
and SAP Enterprise Portals, SAP Authoriztion System, IBM Busi-
ness Consulting Services, published 2003.

First Installation Procedure, http://help.sap.com, downloaded Jul. 18,
2008.

Li, L., Offutt, A., Algorithmic Analysis of the Impact of Changes to
Object-Oriented Software, dated Nov. 4, 1996, pp. 171-184, IEEE
Computer Soc., Los Alamitos, CA.

SAP R/3 Security Upgrade, Yvette Smith, erpgenre.com, down-
loaded May 7, 2008.

Upgrade Procedure, http://help.sap.com, downloaded Jul. 18, 2008.
India Patent Office First Examination Report for Application No.
1202/MUM/2008 dated Mar. 6, 2014, 2 pages.

U.S.Final Office Action for U.S. Appl. No. 12/183,482 dated Apr. 12,
2012, 30 pages.

U.S. Non-Final Office Action for U.S. Appl. No. 12/183,482 dated
Oct. 17, 2011, 28 pages.

U.S. Non-Final Office Action for U.S. Appl. No. 12/183,482 dated
Jun. 7, 2013, 28 pages.

U.S. Notice of Allowance for U.S. Appl. No. 12/183,482 dated Jan.
24,2014, 10 pages.

* cited by examiner

U.S. Patent Jul. 26, 2016 Sheet 1 of 4 US 9,400,648 B2

Processor108

Upgrade Analysis Tool
Display 112 104
Memory 11

=N
N

Software Program

Executable Code
122

Program
Object 1

Program
Object N

Current State 128
Information

Default State 130
Information

Upgrade 132
Information

106

Repository Database

State 124 | |State 126

Information 1 Information
State Information 114
Application Database 116

U.S. Patent

Jul. 26, 2016 Sheet 2 of 4

Software Program in an Unmodified
Form 102

118 120

Default
Program
Object X

Default
Program
Object 1

| |
T]
| |
| |
| |
| |
| |
} }
| |
i |
I I
| |

Default State Default State

Information 1 Information X
124 126

Default State Information 114

Application Database 11

\ 200

Figure 2

US 9,400,648 B2

US 9,400,648 B2

Sheet 3 of 4

Jul. 26, 2016

U.S. Patent

7 ainbi4
31370840 15000021 99d S I471any og'A
av.is 1vis 10¥d vLvad 1any og'A
NEOLS €01S Llodd viva lany 29'A
YINOS LEWS 10¥Yd vLlvad 1[any og'A
31370890 04zZ/amy/ Mvd 04N WAy 2g9°'A
“s0oorwew | saooidio TI0N INGMVI ROV
¢ aJnbi4
I (i L 0 0 0 0 NIV H3SNSSYW WNaY 08'A
L 0 0 0 0 0 l Myd 0N INOY 08'A
0 0 0 0 0 0] SAVOT V.Lva ME WaY 09'A
0 0 0 0 0 0 0 [197ngY.L NO aav 0g'A

U.S. Patent Jul. 26, 2016 Sheet 4 of 4 US 9,400,648 B2

PROVIDING DEFAULT STATE 502

INFORMATION IN A
REPOSITORY DATABASE

START

A

504

A
RETRIEVING CURRENT
STATE INFORMATION

~

A
COMPARING THE CURRENT STATE 506
INFORMATION WITH THE DEFAULT STATE
INFORMATION

IS AN
IS PROGRAM ASSOCIATED
OBJECT PROGRAM
OBSOLETE OBJECT
OR OBSOLETE OR

REVISED? REVISED?

YES

510

A
IDENTIFY PROGRAM

512

NO

OBJECT AS IMPACTED

Figure 5

Y

US 9,400,648 B2

1
SOFTWARE UPGRADE ANALYSIS SYSTEM

This application is a continuation of U.S. application Ser.
No. 12/183,482, filed Jul. 31, 2008, which claims priority
under 35 U.S.C. §119(a) to India Patent Application No.
1202/MUM/2008, filed Jun. 5, 2008, the entire contents of
which are hereby incorporated herein by reference.

BACKGROUND

1. Technical Field

This application relates to software installation and, in
particular, to software upgrades.

2. Related Art

Software programs can be large and complex. Such soft-
ware programs may be difficult and time-consuming to install
and/or upgrade. Enterprise business applications have been
known to take months to upgrade. In some examples, users
may alter the way they use a software program after an
upgrade due to changes in the software program introduced in
the upgrade. Additionally, software programs may be modi-
fied or customized priorto an upgrade. An upgrade may cause
one or more modifications to fail or work improperly. Con-
sequently, the impact of an upgrade of a software program
may be of interest in order to plan for an upgrade of the
software program in a production system.

In order to determine the impact of an upgrade of a soft-
ware program, a test system may be used. A test system may
include a copy of the software program currently in use in a
production system. The copy of the software program may
then be upgraded without disrupting users of the production
system. The impact of the upgrade may then be analyzed in
the test system. It may be more efficient, however, to analyze
the impact of a software upgrade without having to perform
anupgrade either on the operational system or the test system.

SUMMARY

In one example, a system for analyzing an upgrade of'a first
version of a software program in a modified form to a second
version of the software program in the modified form without
performing the upgrade may include computer code. The
computer code may provide default state information of
default program objects. The default program objects would
be included in a default installation of the second version of
the software program in an unmodified form. The computer
code may also retrieve current state information of current
program objects from an application database. The software
program in the modified form may include the current pro-
gram objects. The computer code may generate upgrade
information based on a comparison between the current state
information and the default state information. The upgrade
information may identify a subset of the current program
objects that would be impacted by the upgrade.

In another example, a method of analyzing impacts of
performing an upgrade from a first version to a second version
of'a software program in a modified form without performing
the upgrade may include providing default state information
in a repository database. The default state information may
include differences between a first set of default program
objects and a second set of default program objects. The first
set of default program objects would be included in a default
installation of the first version of the software program in an
unmodified form. The second set of default program objects
would be included in a default installation of the second
version of the software program in an unmodified form. The
method may further include retrieving current state informa-

10

20

30

35

40

45

55

2

tion related to current program objects from an application
database. The first version of the software program in the
modified form may include the current program objects. The
method may also include comparing the current state infor-
mation with the default state information in order to generate
upgrade information. The upgrade information may identify a
subset of the current program objects that would be impacted
by the upgrade.

In yet another example, a computer program product for
use in a computer to analyze an impact of performing an
upgrade from a first version to a second version of a software
program in a modified form without performing the upgrade
may include a computer readable medium. The computer
readable medium may include computer executable program
code physically embodied therein and default state informa-
tion. The default state information may include differences
between a first set of default program objects and a second set
of default program objects. The first set of default program
objects would be included in a default installation of the first
version of the software program in an unmodified form. The
second set of default program objects would be included in a
default installation of the second version of the software
program in an unmodified form. The computer program prod-
uct may further include computer executable program code to
cause a processor of a computer to retrieve current state
information of current program objects from an application
database. The software program in the modified form may
include the current program objects. The computer program
product may also include computer executable program code
to cause the processor to generate upgrade information based
on a comparison between the current state information and
the default state information. The upgrade information may
identify a subset of the current program objects that would be
impacted by the upgrade.

Further objects and advantages of the present invention
will be apparent from the following description, reference
being made to the accompanying drawings wherein preferred
embodiments of the present invention are clearly shown.

BRIEF DESCRIPTION OF THE DRAWINGS

The innovation may be better understood with reference to
the following drawings and description. The components in
the figures are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the invention.
Moreover, in the figures, like referenced numerals designate
corresponding parts throughout the different views.

FIG. 1 is an example of a system to analyze an upgrade of
afirst version of'a software program to a second version of the
software program in without performing the upgrade;

FIG. 2 is an example of a test system that includes a
software program in an unmodified form and an application
database;

FIG. 3 illustrates a portion of an example summary report
that includes statistics of the impacts on parent roles gener-
ated from the upgrade information;

FIG. 4 illustrates a portion of an example report generated
from the upgrade information that identifies the revised and
obsolete transaction codes associated directly or indirectly
with parent roles; and

FIG. 5 illustrates one example of a method included in a
system to analyze impacts of performing an upgrade from a
first version to a second version of a software program in a
modified form without performing the upgrade.

DETAILED DESCRIPTION

The impact of an upgrade may be determined without
performing the upgrade on a test system. In an example

US 9,400,648 B2

3

embodiment, a system to analyze an upgrade of a first version
of a software program to a second version of the software
program without performing the upgrade may include an
upgrade analysis tool. The upgrade analysis tool may include,
for example, a .NET standalone application. The upgrade
analysis tool may retrieve state information of program
objects from an application database, where the program
objects are included in a first version of a software program.
For example, the upgrade analysis tool may retrieve the state
information from an Oracle database, which is used by a first
version of an Enterprise Resource Planning (ERP) applica-
tion to store program objects. The program objects included
in the ERP application may include, for example, security
related objects such as security roles, transaction codes,
authorization objects, etc. The state information of the secu-
rity roles may include, for example, names of each of the
security roles.

The upgrade analysis tool may compare the state informa-
tion retrieved from the application database with default state
information provided in a repository database. The repository
database may include, for example, a Microsoft SQL Server
database. Database entries in the SQL Server database may
identify differences between a first set of default program
objects and a second set of default program objects. The first
set of default program objects would be installed in a default
installation of the first version of the ERP application. The
second set of default program objects would be installed in a
default installation of the second version of the ERP. The
identified differences may include, for example, details of the
changes to default security objects such as transaction codes,
authorization objects, etc. The details of the changes may
include indication of whether the default security objects are
revised, obsolete, or newly added.

The upgrade tool may generate upgrade information that
identifies impacts or potential impacts of the upgrade on the
program objects. The upgrade tool may generate the upgrade
information based on a comparison between the default state
information and the state information retrieved from the
application database. For example, the upgrade information
may identify a security role that would be impacted because
atransaction code associated with the security role is obsolete
in the second version of the ERP application.

FIG. 1 is an example of one embodiment of a system 100 to
analyze an upgrade of a first version of a software program
102 to a second version of the software program in without
performing the upgrade. The system 100 may include an
upgrade analysis tool 104 and a repository database 106. The
system 100 may include additional, different, or fewer com-
ponents. For example, the system may 100 may include a
network over which the upgrade analysis tool 104 communi-
cates with the repository database 106.

The upgrade analysis tool 104 may be any device or com-
bination of devices configurable to execute computer code
with one or more processors, such as a computer, a server, a
mobile computer, and a Personal Digital Assistant. The
upgrade analysis tool 104 may include a processor 108, a
memory 110, and a display 112. The upgrade analysis tool
104 may include additional, different, or fewer components.
For example, the upgrade analysis tool 104 may not include a
display 112 and just generate upgrade analysis information
about an upgrade without displaying that information. That
upgrade analysis information may be transmitted for display
or output on other systems.

The processor 108 may be in communication with the
memory 110, the display 112, and/or other components
included in the system 100. The processor 108 may be a
general processor, central processing unit, server, application

10

15

20

25

30

35

40

45

50

55

60

65

4

specific integrated circuit (ASIC), digital signal processor,
field programmable gate array (FPGA), digital circuit, analog
circuit, or combinations thereof. The processor 108 may be
one or more processors or devices operable to execute com-
puter code. The computer code may be written in any pro-
gramming language now known, or later discovered, such as
Java, C#, C++, PHP, assembly language, and Visual Basic.

The memory 110 may be any now known, or later discov-
ered, storage device. The memory 110 may be a non-volatile
and/or volatile memory, such as a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM), or flash memory. The
memory 110 may include an optical, magnetic (hard-drive) or
other memory device.

The display 112 may be any electro-optical device for
displaying data, such as a liquid crystal display (LCD), a
cathode ray tube (CRT), an electro-luminescent display, a
plasma display panel (PDP), a vacuum florescent display
(VFD), or other display device.

The upgrade analysis tool 104 may be any type of applica-
tion now known or later developed, which incorporates the
system components and methods described herein. In some
examples, the upgrade analysis tool 104 may include a stan-
dalone application. In other examples, the upgrade analysis
tool 104 may include a web-based application. In still other
examples, the upgrade analysis tool 104 may be a client/
server application.

The upgrade analysis tool 104 may communicate with the
repository database 106. The repository database 106 may by
any database. In some examples, the repository database 106
may be included in the upgrade analysis tool 104. In other
examples, the repository database 106 is not included in the
upgrade analysis tool 104.

A database may be a memory including any electronic
collection of information. For example, the database may
include information organized so that the information may be
accessed, managed, and updated, such as a Relational Data-
base Management System (RDBMS), an object-oriented
database, an extensible markup language (XML) database, a
file system, memory structures, or other now known or later
developed databases. The database may use any type of
memory and structure, such as a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM), flash memory, optical
memory, magnetic (hard-drive or tape) memory or other
memory device.

The database may include database entries. A database
entry is information that may be retrieved from or stored in the
database. The database entry may be accessed or looked-up
using a unique key, such as a primary key value, a full path
name, or a memory address. For example, the database entry
may be a row in a table in an RDBMS. In other examples, the
database entry may be stored across multiple locations in the
database, such as across multiple tables in an RDBMS. A
table in an RDBMS may include one or more columns. The
database may include a collection of databases.

One or more database entries may be associated in the
database with one or more other database entries. For
example, a first security role entry may be associated with a
second security role entry, where a corresponding parent
security role includes a corresponding child security role.

Any method of associating database entries in a database,
now known or later discovered, may be used. In some
examples, a first database entry is associated with a second
database entry by including a unique key in the second data-
base entry to identify the first database entry. In other
examples, the first database entry is associated with the sec-

US 9,400,648 B2

5

ond database entry by including a unique key in the first
database entry to identify the second database entry. In still
other examples, the database includes an association database
entry, where the association database entry includes a unique
key to indentity the first database entry and a unique key to
identify the second database entry.

The upgrade analysis tool 104 may retrieve state informa-
tion 114 from an application database 116. The application
database 116 may be any database that contains state infor-
mation 114 of program objects 118 and 120, where the soft-
ware program 102 includes the program objects 118 and 120.
The software program 102 may be any installed application or
combination of applications, such as an Enterprise Resource
Planning application, a Customer Relationship Management
application, an accounting program, a tax application, and a
word processing application. The software program 102 may
include executable code 122 that when executed instantiates
one or more program objects, 118 and 120. A program object,
118 and 120, is a conceptual entity that may contain data
and/or a portion of the executable code 122 that operates on
the data. The program object 118 and 120 may, for example,
appear to the executable code 122 as a contiguous block of
computer memory of a specific size at a specific location,
even if elements of the program object are not physically
stored in a contiguous block of memory. Thus, a program
object 118 and 120 may represent one or more variables in a
procedural programming model, and/or one or more variables
or objects in an object-oriented programming model.
Examples of a program object 118 and 120 may include a
sales order, a company, a contact, a product, a security role, a
business unit, and an employee. Each of the program objects
118 and 120 may also have a type. For example, the type may
be class, a collection of classes, a data type, a primitive data
type, or any other structure common to each of the program
objects 118 and 120 of that type. The data included in each of
the program objects 118 and 120 is known as state. The
software program 102 may store state information 124 or 126
of one or more of the program objects 118 and 120 in the
application database 116. For example, the state information
124 or 126 of an employee program object 118 and 120 may
include an employee number, an employee name, and a
department number. The state information, 124 or 126 of each
of the respective program objects 118 and 120 may include
the state, a portion of the state, and/or information related to
the state of each of the respective program objects 118 and
120. The state information 114 stored in an application data-
base 116 may include the state information 124 or 126 of each
of the program objects 118 and 120 and/or information
related to the state information 124 or 126 of each of the
program objects 118 and 120.

In other examples, the repository database 106 instead of
the upgrade analysis tool 104 may retrieve the state informa-
tion 114 from the application database 116. In such examples,
the repository database 106 may provide one or more data-
base links permitting database commands operating on the
database links to actually operate on tables in the application
database 116. In still other examples, the upgrade analysis
tool 104 or the repository database 106 also stores the state
information 114 retrieved from the application database 116
as current state information 128 in the repository database
106. For example, the repository database 106 may include a
snapshot of a portion of the application database 116. The
current state information 128 may be the same as or different
from the state information 114.

The repository database 106, in addition to or instead of the
current state information 128, may include default state infor-
mation 130. The default state information 130 is described

10

15

20

25

30

35

40

45

50

55

60

65

6

below in relation to FIG. 2. As is also described below, the
upgrade analysis tool 104 may generate upgrade information
132. The upgrade information may identify a subset of the
program objects 118 and 120 that would be impacted by the
upgrade of the software program 102 from the first version to
the second version. In some examples, the upgrade informa-
tion 132 may be stored in the repository database 106. In other
examples, the upgrade information 132 may be transmitted to
another device or process for further processing, for display
and/or for storage.

FIG. 2 is an example of another embodiment of a test
system 200 that includes a software program 102 in an
unmodified form and an application database 116. When the
software program 102 is first installed, the software program
102 may include one or more default program objects 118 and
120. For example, when an ERP application is first installed,
the ERP application may include a default set of security
related objects, organizational units, products, and/or cus-
tomers. Each of the default program objects 118 and 120 may
include respective default state information 124 and 126
stored in the application database 116. The default state infor-
mation 114 stored in an application database 116 may include
the default state information 124 or 126 of each of the default
program objects 118 and 120 and/or information related to
the default state information 124 or 126 of each of the default
program objects 118 and 120.

The software program 102 may be considered to be in an
unmodified form when first installed. As the software pro-
gram 102 is used, the program objects 118 and 120 may be
modified, removed, added, or left unchanged by users of the
software program. The software program 102 may be consid-
ered to be in a modified form after a user modifies, removes,
oradds one or more of the program objects 118 and 120. Ifthe
user has not modified, removed, or added one or more of the
program objects 118 and 120, but a program object 118 and
120 has been modified, removed, or added by merely execut-
ing the software program 102, the software program 102 is
still considered to be in an unmodified form.

The software program 102 installed in the test system 200
may be a first version of the software program 102 and/or a
second version of the software program 102. In one example,
the second version of the software program 102 may be
installed separately from the first version. In another example,
the first version of the software program 102 may be upgraded
to the second version of the software.

The first and second versions of the software program 102
in an unmodified form may include fewer, greater, different,
and/or modified default program objects 118 and 120. Difter-
ences between the default program objects 118 and 120 of the
first version and the default program objects 118 and 120 of
the second version may be determined with an automatic
process and/or manually. For example, one may determine
which of the program objects 118 and 120 of a particular type
in the first version no longer exist in the second version. A
database command, for example, may be transmitted to the
application database 116 in the test system 200 to make such
a determination, where default state information 114 from
both the first version and the second are included in the
application database 116. In another example, one may deter-
mine which of the program objects 118 and 120 of the par-
ticular type in the first version have been added in the second
version. In yet another example, one could manually examine
the program objects 118 and 120 of a particular type in the
first version and in the second version to determine which of
the program objects 118 and 120 of'the first version have been
replaced by a different program object 118 and 120 in the
second version. In still another example, one or more of the

US 9,400,648 B2

7

differences may be identified by a developer of the software
program 102 and provided in the application database 116
through an installation of and/or upgrade to the second ver-
sion. A set of modified default program objects may include
one or more of the default program objects 118 and 120 that
would be replaced, added, removed, or have one or more
attributes altered in such an upgrade.

A program object may be considered revised if the program
object has been replaced or had one or more attributes altered.
A program object may be considered obsolete if the program
object has been removed. A program object may be consid-
ered modified or changed if the program object has been
either revised or is obsolete.

In one example, differences between the default program
objects 118 and 120 of the first version and the default pro-
gram objects 118 and 120 of the second version of the soft-
ware program may be stored as the default state information
130 in the repository database 106 of FIG. 1. In a different
example, default state information 114 of a second version of
the software program 102 in an unmodified from may be
stored as the default state information 130 in the repository
database 106. In the latter example, differences between the
default program objects 118 and 120 of the first version and
the second version may be determined by comparing the
default program objects 118 and 120 of the second version
included in the program objects 118 and 120 of the first
version of the software program 102 in a modified form.

The upgrade analysis tool 104 may generate the upgrade
information 132 based on a comparison of the default state
information 130 with the current state information 128. The
upgrade analysis tool 104 may therefore reuse the default
state information 130 when analyzing any given installation
of'the first version of the software program 102 in a modified
form without performing an upgrade.

As noted above, the upgrade information 132 may identify
the subset of the program objects 118 and 120 that would be
impacted by an upgrade from the first version to the second
version of the software program 102 in a modified form. Of
course, any of the program objects 118 and 120 that are
included in the set of modified default program objects may
be impacted by the upgrade. For example, if a default autho-
rization object included in the default program objects is
removed in an upgrade of the software program 102 in an
unmodified form, and the default authorization object is
included the software program 102 in a modified form, the
default authorization object may also be removed in an
upgrade of the software 102 in a modified form. Any of the
program objects 118 and 120 that are directly or indirectly
associated with the set of modified default program objects
may also be impacted by the upgrade. For example, if a
security role is included in the software program 102 in the
modified form, and the security role is indirectly associated
with an obsolete default authorization object, the security role
may be impacted by an upgrade because the security role
would potentially lose an indirectly associated authorization
object in the upgrade.

In contrast, program objects 118 and 120 that are unasso-
ciated with the set of modified default program objects may
not be impacted by the upgrade. For example, if a new sup-
plier object is included the software program 102 in a modi-
fied form, but has no relation to the default security role,
removal of the default security role may have no impact on the
new supplier object. Thus, the relationships between the
modified default program objects and the program objects
118 and 120 may be used to identify the subset of the program

10

15

20

25

30

35

40

45

50

55

60

65

8

objects 118 and 120 that would be impacted by the upgrade.
These relationships may be hereafter referred to as program
object relationships.

The subset of the program objects 118 and 120 that would
be impacted by the upgrade may be determined from a com-
parison of the set of modified default program objects with the
program objects 118 and 120 included in the software pro-
gram 102 in a modified form. A similar result may be
achieved by comparing state information of those program
objects. Therefore, the upgrade information 132 may be
based on the comparison of the default state information 130
and the current state information 128 (state information 114).
The comparison may be made in view of the program object
relationships.

The comparison may include a comparison of all program
objects 118 and 120 in some examples. However, in other
examples, program objects 118 and 120 may be selectively
compared. One reason may be that not all types of program
objects may be of interest. For example, modified default
program objects of a type that are likely to be removed in the
software program 102 of a modified form may not be of
interest. As an example, default customer objects in an ERP
application will likely be removed in the modified form.
Additionally, other program objects in the ERP application in
the modified form are not likely to have a relationship with the
default customer objects because the default customer objects
will likely be removed. As another example, one or more
types of program objects may be automatically upgraded
during the upgrade. For example, sale orders in an ERP appli-
cation may be upgraded automatically during the upgrade and
may need no further manual analysis or modification after
performing an upgrade.

In contrast, any type of program object that may need a
manual analysis and/or modification after performing an
upgrade may be of interest. For example, the type of program
objects 118 and 120 related to security in an ERP application
may be of interest because many default security objects are
retained in the ERP application in a modified form, and many
new, security objects and other types of objects may be related
to security objects. Thus, objects related to a security feature
may be of particular interest. In another example, default
program objects 118 and 120 retained yet associated with
other program objects 118 and 120 may be of interest. For
example, program objects 118 and 120 such as database
tables and display screens may have such characteristics. If a
database field of a database table were added during an
upgrade, a display screen that stores to and/or retrieves from
the database table may need to be changed to account for the
added database field.

A detailed example may further illustrate the operation of
one embodiment of the upgrade analysis tool 104. An ERP
application may include many different types of program
objects 118 and 120. The program objects 118 and 120 may
include program objects related to security. For example,
security related program objects 118 and 120 of an SAP ERP
application may include roles, profiles, authorization objects,
authorization fields, authorization values, authorization
groups, and check indicators. The security objects provide a
mechanism for controlling access to certain program objects
referred to as object classes. Examples of object classes
include sales orders, suppliers, customers, and other business
objects. Each of the object classes may have one or more
corresponding database tables in the application database 116
to store respective state information 124 and 126. An object
class may have a one-to-many relationship to authorization
objects. Each of the authorization objects identifies a set of
permissible activities, such as read and/or write. Each of the

US 9,400,648 B2

9

authorization objects may have a many-to-many relationship
to authorization fields. An authorization field may identify a
field in one of the database tables.

A process and/or thread executing within the ERP appli-
cation may attempt to access a program object of an object
class such that one or more of the database fields are accessed.
Each authorization object may be checked that is both asso-
ciated with the object class and associated with authorization
fields, where the authorization fields are associated with the
one or more database fields accessed. Access may be granted
if the access is a permissible activity included in the set of
permissible activities identified by the authorization object
being checked.

Furthermore, the authorization object may have a one-to-
many relationship to authorization values. Authorization val-
ues permit an additional level of access control based on a
value of the accessed field. A given authorization value may
identify an authorization field and an allowed value. Access
may be granted if a value in a field for which access is being
attempted matches the allowed value. For example, a job
order may exist for a particular plant in a manufacturing
facility. A database table may contain state information, 124
or 126, of the job order program object, 118 or 120. The
database field may contain a database field with a value that
identifies the particular plant. Access may be granted where
an attempt is made to modify the job order program object, if
the following conditions are met: (1) the value that identifies
the particular plant is included in an authorization value; (2)
the authorization value is associated with an authorization
object; (3) the authorization object is associated both with a
job order object class and with an authorization field object
for the database field with the value that identifies the plant;
and (4) the authorization object specifies write as a permis-
sible activity. An allowed value may identify a range of per-
missible values instead just a specific value.

A profile may be a collection of authorization values
grouped together, for example, to perform a business activity
or part of a business activity. Profiles may have a many-to-
many relationship to authorization values.

A role may include zero, one, or multiple profiles. Roles
may have a one-to-many relationship to profiles. A user may
be assigned one or more roles to control access by the user to
one or more object classes. A role may have one or more
parent roles and/or one or more child roles. A role may also be
assigned to a transaction code.

A transaction code, or tcode, may identify a particular
business activity in ERP application. For example, a tcode
might be “MMO1” and identify a business activity of creating
a material object in the ERP application. The tcode may be
used, for example, to identify a display screen or collection of
display screens that are used to create the material object.
Because certain roles may provide access privileges that
enable a business activity or part of a business activity, roles
may be associated with a transaction code. Roles may have a
many-to-many relationship with transaction codes. Addition-
ally, authorization objects may be associated with transaction
codes for similar reasons.

When accessing a program object of a given object class
during a business activity identified by a tcode, the authori-
zation objects associated with the object class may not be
checked as described above. A check indicator object may
include a check flag and a mapping between a transaction
code and an authorization object. The check flag indicates
whether the authorization object should be checked for the
transaction code. Thus, access control governed by the autho-

20

35

40

45

50

55

10

rization objects may be selectively enabled or disabled
through the check indicator without removing or creating any
of the authorization objects.

Authorization groups may provide an alternative access
control mechanism. Authorization groups may control access
to database tables and one or more database fields of those
database tables. Authorization groups may be used when the
ERP application generates reports that may operate at the
table level instead of at the object class level. Authorization
groups may have a many-to-many relationship to database
tables.

The relationships between the security related program
objects 118 and 120 described above may be used to design a
tailored comparison of the current state information 128 with
the default state information 130 stored in the repository
database 106. The tailored comparison may identify the pro-
gram objects 118 and 120 that would be impacted by an
upgrade and that would be of interest.

For example, the comparison may be designed to deter-
mine the impact on roles. The comparison may be further
designed to determine the impact on parentless parent roles,
which may be parent roles that are not child roles of another
role. The reason is that if a child role would be impacted by the
upgrade, then the parent role, by implication, would also be
impacted.

FIG. 3 illustrates a portion of an example summary report
that includes statistics of the impacts on parent roles gener-
ated from the upgrade information 132. Each of the rows in
the report may correspond to a parent role. Alternatively, each
of the rows in the report may correspond to a parent role that
does not have a parent. The middle six columns include
statistics that indicate the number of a given type of program
objects that would change in an upgrade, where the program
objects are either directly or indirectly related to the role on
each row.

For example, the number in a “TCode Changes” column
indicates the number of transaction codes that were changed
that are associated with the role or with any direct or indirect
child role of the role. The default state information 130 may
include a list of all of the default transaction codes that would
be changed in an upgrade. For example, a first database table
included in the default state information 130 may include
every default transaction code in the ERP application that
would be changed in the upgrade. A second database table
included in the current state information 128 may include
every role in the ERP application and any associated transac-
tion code. A third database table included in the current state
information 128 may include identification of any associated
parent roles and/or child roles of each of the roles in the ERP
application. A comparison of the first database table with the
second and third database tables may be made using one or
more structured query language (SQL) commands. These
SQL commands may calculate the number of default trans-
action codes that would be modified and that are associated
with the parent role either directly or indirectly. For example,
each default transaction code that is modified and is associ-
ated with a child role of a parent role, may be included in the
number for the parent role. This example is an example of
identifying a program object as impacted by an upgrade
because another object indirectly associated with the program
object would be modified in the upgrade. A program object is
indirectly associated with another program object when the
program object is associated with the other program object
through one or more other objects.

In another example, the number in a “Check Ind Changes”
column may indicate the number of check indicators having a
check flag value that would be modified in an upgrade. Each

US 9,400,648 B2

11

of the check indicators included in the number may be asso-
ciated with a transaction code that is in turn associated with
the role or with any direct or indirect child role of the role.
This example is also an example of identifying a program
object as impacted by an upgrade because another object
indirectly associated with the program object would be modi-
fied in the upgrade.

In yet another example, the number in an “Auth Objects
Changes” column may indicate the number of default autho-
rization objects that would be modified in anupgrade. Each of
the default authorization objects counted may be associated
with one or more authorization values that are in turn associ-
ated with one or more profiles that are in turn associated with
the role or with any direct or indirect child role of the role.

In still another example, the number in an “Org Element
Changes” column may indicate the number of modified
authorization objects that contain organization element fields
that impact the specific security role. Organization elements
may be a hierarchical set of elements that describe the struc-
ture of a business organization. For example, a business unit
may have one or more facilities and each of the facilities may
have one or more plants. Available organization elements
may be stored in an organization element database table. An
authorization object may include an organization element
field that corresponds to a database field that identifies an
organization element associated with a particular program
object. An organization element field may not inherit values
from a parent role as other authorization fields may do. Con-
sequently, values of an organization element in a derived
security role may have to be populated manually instead of
simply being inherited. If an authorization object includes an
organization element field and the authorization object would
be obsolete in an upgrade, derived security roles that may
have been populated manually may need to be changed. If an
authorization object includes an organization element field in
a first version of the software program, but not in a second
version of the software program, derived security roles may
also need to be changed. If an authorization object includes an
organization element field added in the second version of the
software program, derived security roles may need to be
changed.

FIG. 4 illustrates a portion of an example report generated
from the upgrade information 132 that identifies modified
transaction codes associated with parent roles. This is an
example of when the upgrade information 132 may specifi-
cally identify modified program objects associated with a
given program object. The upgrade information 132 may also
indicate how a modified program object is modified (for
example by indicating whether the modified program object
is revised or obsolete). The upgrade information 132 may
further indicate the revised value when a program object is
modified. The upgrade information 132 may also identify a
range of values of an attribute of revised or obsolete program
objects directly or indirectly associated with the given object.
An attribute, or property, of a program object may be value or
object included in the program object. For example, a field
object may indicate what database table and database field
contains state information of an attribute of a program object.
For example, for a given role and/or parent role, the upgrade
information 132 may include, for each of the first version and
the second version, a range of permissible values of a field for
each unique combination of transaction code and authoriza-
tion object associated directly or indirectly with the given
role.

In some examples, the default state information 130 in the
repository database 106 may include state information related
to more than two versions of the software program 102. The

40

45

50

12

upgrade analysis tool 104 may determine a current version of
the software program 102 to be analyzed and a desired ver-
sion to which to upgrade. If the default state information 130
includes information on the current version and the desired
version, then the upgrade analysis tool 104 may continue to
analyze the upgrade.

The application database 116 from which the upgrade
analysis tool 104 retrieves the state information 114 may not
be the production application database 116 in which the soft-
ware program 102 stores the state information 124 and 26 of
the program objects 118 and 120. The upgrade analysis tool
104, a different application, or a combination of applications
may extract the state information 114 from the production
application database 116 into the application database 116
from which the upgrade analysis tool 104 retrieves the state
information 114. The latter application database 116 may be,
for example, a text file with comma separated values. The
state information 114 retrieved by the upgrade analysis tool
104 and/or extracted from the production application data-
base 116 may be limited to information related to the state
information 124 and 126 of program objects 118 and 120
related to one or more features. For example, the state infor-
mation 114 retrieved by the upgrade analysis tool 104 may be
limited to information related to security program objects and
program objects associated with the security program
objects.

FIG. 5 illustrates one example of a method included in a
system 100 to analyze impacts of performing an upgrade
from a first version to a second version of a software program
102 in a modified form without performing the upgrade.
Additional, different, or fewer acts may be performed. The
acts do not need to be performed in the order shown in FIG. 5.

Inact 502 of the example illustrated in FIG. 5, the operation
may begin by providing the default state information 130 in a
repository database 106. In act 504, the operation may con-
tinue by retrieving the current state information 119 from an
application database 116. In act 506, the operation may also
continue by comparing the current state information 119 with
the default state information 130 to generate upgrade infor-
mation 132. The upgrade information 132 may identify a
subset of the current program objects 118 and 120 that would
be impacted by the upgrade.

The act 508 of checking whether each of the current pro-
gram objects 118 and 120 is obsolete or revised may be
included in the act 506 of comparing the current state infor-
mation 119 with the default state information 130. If a current
program object 118 and 120 is obsolete or revised, then the
operation may continue to act 510 of identifying the current
program object as impacted. Act 510 of identifying the cur-
rent program object as impacted may also be included in the
act 506 of comparing the current state information 119 with
the default state information 130.

Ifthe current program object 118 and 120 is not obsolete or
revised, then the operation may continue to act 512 by check-
ing whether any program object associated with the program
object is obsolete or revised. If any program object associated
with the program object is obsolete or revised, then the opera-
tion may continue to act 510 by identifying the current pro-
gram object as impacted. Act 512 of checking whether any
program object associated with the program object is obsolete
or revised may be included in the act 506 of comparing the
current state information 119 with the default state informa-
tion 130.

In some examples, the upgrade analysis tool 104 may oper-
ate on a subset of information stored in a production applica-
tion database 116. Operating on a subset of information may
be advantageous because potentially highly confidential

US 9,400,648 B2

13

information may remain in the production application data-
base 116 without being exported. The upgrade analysis tool
104 may also execute without performing the upgrade. Not
performing an upgrade may be advantageous because even on
atest system, performing an upgrade may be difficult. Even if
an upgrade were performed on a test system, identifying
which program objects 118 and 120 may have been impacted
may be difficult to determine. Identification of impacted pro-
gram objects may involve manually examining each program
objectafter an upgrade. In some examples, the upgrade analy-
sis tool 104 may automatically identity which program
objects 118 and 120 may have been impacted and which
program objects 118 and 120 may not have been impacted.
The upgrade analysis tool 104 may, in some examples, dis-
play the upgrade information 132, thereby allowing a user to
further analyze the impacted program objects 118 and 120.

All of the discussion, regardless of the particular imple-
mentation described, is exemplary in nature, rather than lim-
iting. For example, although selected aspects, features, or
components of the implementations are depicted as being
stored in memories, all or part of systems and methods con-
sistent with the innovations may be stored on, distributed
across, or read from other machine-readable media, for
example, secondary storage devices such as hard disks,
floppy disks, and CD-ROMs; a signal received from a net-
work; or other forms of ROM or RAM either currently known
or later developed. Moreover, the various modules and screen
display functionality is but one example of such functionality
and any other configurations encompassing similar function-
ality are possible.

Furthermore, although specific components of innovations
were described, methods, systems, and articles of manufac-
ture consistent with the innovation may include additional or
different components. For example, a processor may be
implemented as a microprocessor, microcontroller, applica-
tion specific integrated circuit (ASIC), discrete logic, or a
combination of other type of circuits or logic. Similarly,
memories may be DRAM, SRAM, Flash or any other type of
memory. Flags, data, databases, tables, entities, and other
data structures may be separately stored and managed, may
be incorporated into a single memory or database, may be
distributed, or may be logically and physically organized in
many different ways. Programs may be parts of a single
program, separate programs, or distributed across several
memories and processors.

While various embodiments of the innovation have been
described, it will be apparent to those of ordinary skill in the
art that many more embodiments and implementations are
possible within the scope of the innovation. Accordingly, the
innovation is not to be restricted except in light of the attached
claims and their equivalents.

What is claimed is:

1. A system for analyzing an upgrade of a first runtime
version of a software program in a modified form to a second
runtime version of the software program in the modified form
without performing the upgrade, the system comprising:

one or more processors to:

retrieve default state information of a plurality of default
program objects included in a default installation of
the second runtime version of the software program in
an unmodified form;

retrieve, from an application database, current state
information of a plurality of current program objects
included in the first runtime version of the software
program in the modified form, the modified form of
the first runtime version of the software program
reflecting user modification, addition, and removal of

30

35

40

45

50

55

14

one or more program objects included in an unmodi-
fied form of the first runtime version of the software
program when first installed; and
compare the current state information for the modified
form of the first runtime version of the software pro-
gram with the default state information for the default
installation of the second runtime version of the soft-
ware program in the unmodified form to generate
upgrade information by:
for each of the current program objects included in the
first runtime version of the software program in the
modified form:
determining whether a current program object in
the modified form of the first runtime version of
the software program is obsolete or revised in the
default installation of the second runtime version
of'the software program in the unmodified form;
and
based on a determination that the current program
object in the modified form of the first runtime
version of the software program is obsolete or
revised in the default installation of the second
runtime version of the software program in the
unmodified form, identifying the current pro-
gram object as impacted; and
generating upgrade information that identifies a sub-
set of the current program objects identified as
being impacted by the upgrade of the first runtime
version of the software program in the modified
form to the second runtime version of the software
program in the modified form in response to iden-
tifying at least one of the current program objects as
impacted.

2. The system of claim 1, where the one or more processors
are further to:

retrieve the default state information from a repository

database; and

store the current state information in the repository data-

base.

3. The system of claim 2, where the one or more processors
are further to:

transmit database commands to the repository database to

populate upgrade information database tables from a
plurality of default state database tables and from a
plurality of current state database tables, the default state
information being stored in the default state database
tables, the current state information being stored in cur-
rent state database tables, and the upgrade information
being stored in the upgrade information database tables.

4. The system of claim 1, where the current program
objects relate to a feature of the software program, and the
software program in the modified form includes other current
program objects.

5. The system of claim 4, where the feature of the software
program includes a security feature.

6. The system of claim 1, where at least one of the current
program objects included in subset of the current program
objects is changed in the software program after the upgrade.

7. The system of claim 6, where the at least one of the
current program objects is removed from the software pro-
gram after the upgrade.

8. The system of claim 6, where the at least one of the
current program objects is associated with an unmodified
program object, and the unmodified program object is
included in the subset of the current program objects because
the unmodified program object is associated with the at least
one of the current program objects.

US 9,400,648 B2

15

9. The system of claim 8, where the unmodified program
object comprises a security role and the at least one of the
current program objects comprises at least one of a plurality
of transaction codes.

10. The system of claim 1, where the one or more proces-
sors are further to:

retrieve first state information for a first plurality of default

program objects included in a first default installation of

the first runtime version of the software program in an

unmodified form, where:

the default program objects are second default program
objects included in the default installation of the sec-
ond runtime version of the software program in an
unmodified form; and

retrieving the default state information of the plurality of
default program objects included in the default instal-
lation of the second runtime version of the software
program in an unmodified form comprises retrieving
default state information that includes differences
between the first default program objects and a second
plurality of default program objects.

11. The system of claim 1, where the software program in
the modified form includes executable code.

12. The system of claim 1, where the one or more proces-
sors are further to:

generate a summary report from the upgrade information,

where:

at least one of the current program objects being of a
certain program object type,

the at least one of the current program objects being
associated with one of the current program objects,
and

the summary report including a count of the at least one
of'the current program objects under a column for the
certain program object type.

13. The system of claim 1, where the one or more proces-
sors are further to:

generate a summary report from the upgrade information,

where:

at least one of the current program objects being of a
certain program object type,

the at least one of the current program objects being
indirectly associated with one of the current program
objects, and

the summary report including a count of the at least one
of'the current program objects under a column for the
certain program object type.

14. The system of claim 1, where the one or more proces-
sors are further to compare the current state information for
the modified form of the first runtime version of the software
program with the default state information for the default
installation of the second runtime version of the software
program in the unmodified form to generate the upgrade
information by:

for each of the current program objects:

based on a determination that the current program object
in the modified form of the first runtime version of the
software program is not obsolete or revised in the
default installation of the second runtime version of
the software program in the unmodified form, deter-
mining whether another current program object in the
modified form of the first runtime version of the soft-
ware program associated with the current program
object is obsolete or revised in the default installation
of'the second runtime version of the software program
in the unmodified form; and

10

15

20

25

30

35

40

45

50

55

60

65

16

based on a determination that another current program
object in the modified form of the first runtime version
of the software program associated with the current
program object is obsolete or revised in the default
installation of the second runtime version of the soft-
ware program in the unmodified form, identifying the
current program object as impacted.

15. The system of claim 14, where:

determining whether another current program object asso-

ciated with the current program object is obsolete or
revised in the default installation of the second runtime
version of the software program comprises determining
whether another current program object associated with
the current program object is obsolete or revised in the
default installation of the second runtime version of the
software program; and

identifying the current program object as impacted com-

prises identifying the current program object as
impacted based on a determination that another current
program object associated with the current program
object is obsolete or revised.

16. The system of claim 1, where generating upgrade infor-
mation comprises generating a report that includes statistics
of' impacts on parent roles generated from the upgrade infor-
mation.

17. The system of claim 16, where generating the report
that includes statistics of impacts on parent roles generated
from the upgrade information comprises generating a report
with rows and columns, where each row in the report corre-
sponds to a parent role that does not have a parent and col-
umns in the report include statistics that indicate a number of
a given type of program objects that would change in an
upgrade, where the program objects are either directly or
indirectly related to the parent role in each row.

18. A system for analyzing an upgrade of a first version of
a software program in a modified form to a second version of
the software program in the modified form without perform-
ing the upgrade, the system comprising:

one or more processors to:

retrieve default state information of a plurality of default
program objects included in a default installation of
the second version of the software program;

retrieve, from an application database, current state
information of a plurality of current program objects
included in the first version of the software program in
the modified form;

compare the current state information with the default
state information to determine upgrade information
that identifies a subset of the program objects as being
impacted, directly or indirectly through a direct or
indirect child relationship, by the upgrade of the first
version of the software program in the modified form
to the second version of the software program in the
modified form; and

generate a report that includes statistics of impacts on
parent roles using the upgrade information, where the
report indicates, for a parent role:

a number of transaction codes that were changed that
are associated with the parent role or with any
direct or indirect child role of the parent role,

a number of check indicators that have a check flag
value that would be modified in an upgrade and that
are associated with a transaction code that is in turn
associated with the parent role or with any direct or
indirect child role of the parent role,

a number of default authorization objects that would
be modified in an upgrade and that are associated

US 9,400,648 B2

17

with one or more authorization values that are in
turn associated with one or more profiles that are in
turn associated with the parent role or with any
direct or indirect child role of the parent role, and

a number of modified authorization objects that
include organization element fields and that are
associated with the parent role or with any direct or
indirect child role of the parent role.

19. The system of claim 18, where the default program
objects are first default program objects, the default installa-
tion is a first default installation, and the default state infor-
mation includes differences between the first default program
objects and a second plurality of default program objects, and
where the second default program objects would be included
in a second default installation of the first version of the
software program in an unmodified form.

20. A system for analyzing an upgrade of a first version of
a software program in a modified form to a second version of
the software program in the modified form without perform-
ing the upgrade, the system comprising:

one or more processors to:

retrieve default state information of a plurality of default
program objects included in a default installation of
the second version of the software program, where the
default state information comprises a first database
table thatincludes every default transaction code in an
enterprise resource planning (ERP) application that
would be changed in the upgrade;

retrieve, from an application database, current state
information of a plurality of current program objects
included in the first version of the software program in
the modified form, where the current state informa-
tion comprises a second database table that includes
every role in the ERP application and any associated
transaction code and a third database table that
includes identification of any associated parent roles
and child roles of each of the roles in the ERP appli-
cation; and

compare the current state information with the default
state information to generate upgrade information by:
for each of the current program objects:

10

15

20

25

30

35

18

determining whether a current program object is
obsolete or revised in the default installation of the
second version of the software program by calcu-
lating a number of default transaction codes for the
current program object that would be modified and
that are associated with a role in the ERP applica-
tion either directly or indirectly using one or more
structured query language (SQL) commands to
compare the first database table with the second
database table;

based on a determination that the current program
objectis obsolete or revised, identifying the current
program object as impacted;

based on a determination that the current program
object is not obsolete or revised, determining
whether another current program object that has a
direct or indirect child relationship to the current
program object is obsolete or revised in the default
installation of the second version of the software
program by calculating a number of default trans-
action codes that would be modified and that are
associated with a role in the ERP application either
directly or indirectly using one or more structured
query language (SQL) commands to compare the
first database table with the second and third data-
base tables; and

based on a determination that another current pro-
gram object that has the direct or indirect child
relationship to the current program object is obso-
lete or revised, identifying the current program
object as impacted; and

generate upgrade information that identifies a subset
of the current program objects identified as being
impacted by the upgrade of the first version of the
software program in the modified form to the sec-
ond version of the software program in the modi-
fied form.

